Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

1-Benzyl-3,3-dichloro-1 H -indol-2(3H)-one

A. N. C. Lötter, M. A. Fernandes, W. A. L. van Otterlo and C. B. de Koning*

School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
Correspondence e-mail: dekoning@chem.wits.ac.za
Received 14 November 2006
Accepted 15 January 2007
Online 10 February 2007
The title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}$, was synthesized from N-benzylisatin. The compound crystallizes as stacks of molecules running down the c axis. Molecules within each of these stacks interact with each other through $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, and interact with neighbouring stacks through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Oxindoles occur commonly as subunits of biologically active compounds. For example, compound (I) (see scheme) has been found to be a potential inhibitor of the kinase insert

(I)

(IV)

(V)
domain-containing receptor (KDR), alternatively referred to as VEGFR-2, a receptor for vascular endothelial growth factors (Bouérat et al., 2005). In essence, this compound is believed to function as a key regulator of angiogenesis.

As part of our research programme, we have been interested in the synthesis of substituted heterocycles, such as carbazoles (de Koning et al., 2003; Pelly et al., 2005; Pathak et al., 2006) and fused indole systems (de Koning et al., 2004). During the course of our work on the synthesis of potential kinase inhibitors (Fabbro et al., 2002; Geyer et al., 2005; Noble et al., 2005), we had reason to synthesize the simple oxindole

Figure 1

A view of the title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown with an arbitrary radius.

Figure 2
Weak interactions between molecules related by the c-glide plane producing a stack of molecules running down the c axis. Indicated with a $\operatorname{star}(\star)$ on the diagram are the $\pi-\pi$ interactions between the N/C1-C3/C8 and $\mathrm{C} 3-\mathrm{C} 8$ rings. Indicated with a hash (\#) are the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the $\mathrm{C} 9-\mathrm{H} 9 B$ group and the $\mathrm{C} 10-\mathrm{C} 15$ ring. Molecules (i), (ii) and (iii) are at the symmetry positions $(x, y, z),\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ and $(x, y$, $1+z$), respectively.
derivative (II) from N-benzylisatin, (III), where the carbonyl group at the 3-position of isatin is replaced by two Cl atoms. The structure of the product, (II), was confirmed by singlecrystal X-ray crystallography (Fig. 1).

The bond lengths and angles for (II) were found to be typical for compounds of this type. Bond lengths and angles for the nitrogen-containing ring of the indol-2-one system are given in Table 1. A search of the Cambridge Structural Database (CSD; Version 5.27; Allen, 2002) for indol-2-one compounds with dichloro substitution on C2 (or IUPAC position 3; Fig. 1) yielded only two structures, viz. 3,3-dichloro$1 H$-indol-2(3H)-one, (IV) (CSD refcode KUNMUB; Zukerman-Schpector et al., 1993), and 1,3,3,5-tetrachloro-1,3-dihydroindol-2-one, (V) (QASXEO; Meketa et al., 2005). Comparison of the bond angles around the N -containing fivemembered ring indicates that the $\mathrm{N} 1-\mathrm{C} 1$ bond length, as well as the $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ angles, are most affected by the atom type bonded to the N atom (Table 3). Comparing geometric parameters around the rest of the five-

Figure 3
The crystal packing in (II), showing the stacks of molecules running down the c axis.

Figure 4
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between molecules related by the screw symmetry running down the b axis. These interactions act between the stacks shown in Fig. 2. Molecules (i), (ii), (iii) and (iv) are at the symmetry positions (x, $y, z),\left(2-x, \frac{1}{2}+y, \frac{1}{2}-z\right),(x, 1+y, z)$ and $\left(2-x, \frac{3}{2}+y, \frac{1}{2}-z\right)$, respectively.
membered ring for all three structures leads to differences of less than $0.01 \AA$ and 1° for the bond lengths and angles, respectively.

The title compound is capable of rotation around the C9N 1 and $\mathrm{C} 9-\mathrm{C} 10$ bonds (Fig. 1). The conformation adopted by the molecule is one in which the indol-2-one system is rotated such that it is almost perpendicular [82.03 (3) ${ }^{\circ}$] to the phenyl ring (Fig. 2). This conformation allows for simultaneous C $\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions between molecules related by the c-glide plane. The $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction occurs between the $\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$ group and the $\mathrm{C} 10-\mathrm{C} 15$ ring of a neighbouring molecule (Table 2 and Fig. 2).

The $\pi-\pi$ interaction occurs between the N1/C1-C3/C8 ring (the five-membered ring of the indol-2-one system) and the $\mathrm{C} 3-\mathrm{C} 8$ ring (the six-membered ring of the indol-2-one system) of a neighbouring molecule (Fig. 2). In this interaction, the two rings are slipped by 30.2° relative to their ring perpendiculars (the average interplanar distance is $3.484 \AA$), the ring-centroid-to-ring-centroid distance being 4.0329 (9) A. Admittedly, the five-membered ring of the indol-2-one system is only partly aromatic, but a significant part of the ring (O1, C 1 and N 1) is involved in conjugation with the aromatic sixmembered ring, as shown by the bond lengths between these atoms (Table 1). The $\pi-\pi$ interaction is therefore really between these atoms and those of the neighbouring ring, and if this were taken into account the centroid-to-centroid distance would be even shorter. A consequence of the $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions is the creation of stacks of molecules running down the c axis (Fig. 3).

Finally, acting between the stacks of molecules just described are $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (Table 2 and Fig. 4).

Experimental

The dione (III) ($6.40 \mathrm{~g}, 27.00 \mathrm{mmol}$) was dissolved in $\mathrm{C}_{6} \mathrm{H}_{6}(70 \mathrm{ml})$ in a round-bottomed flask and cooled to $273 \mathrm{~K} . \mathrm{PCl}_{5}(12.80 \mathrm{~g}$, $62.10 \mathrm{mmol}, 2.3$ equivalents) was added and the solution was warmed to 298 K for 24 h . The solvent was removed in vacuo to obtain a yellow-brown residue, which was further purified by column chromatography ($5 \% \mathrm{EtOAc} /$ hexane) to afford (II) as a light-yellow oil. On addition of EtOH, (II) precipitated as a colourless solid [yield $6.37 \mathrm{~g}, 81 \%$; m.p. 398-399 K (literature m.p. 399-400 K; Palazzo \& Rosnati, 1953)]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$): $\delta_{\mathrm{H}} 4.94$ ($2 \mathrm{H}, s$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 6.72(1 \mathrm{H}, d, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.14(1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}, \mathrm{ArH})$, $7.22-7.39(6 \mathrm{H}, m, 6 \times \mathrm{ArH})$ and $7.64(1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 44.5\left(\mathrm{PhCH}_{2} \mathrm{~N}\right), 110.1\left(\mathrm{ArCCl}_{2}\right), 124.2$ $(\mathrm{CH}), 124.9(\mathrm{CH}), 127.1(2 \times \mathrm{CH}), 128.1(\mathrm{CH}), 129.0(2 \times \mathrm{CH}), 129.3$ (C), $131.8(\mathrm{CH}), 134.4(\mathrm{C}), 139.8(\mathrm{C})$ and $169.2(\mathrm{C}=\mathrm{O})$ (one CH not observed in spectrum).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}$
$M_{r}=292.15$
Monoclinic, $P 2_{1} / c$
$a=10.4847$ (13) \AA
$b=14.4641$ (18) \AA
$c=9.2203$ (11) \AA
$\beta=107.244(2)^{\circ}$
$V=1335.4(3) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.453 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.48 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Irregular, colourless } \\
& 0.48 \times 0.30 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
8835 measured reflections
3213 independent reflections 2603 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=28.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.088$
$S=1.05$
3213 reflections
172 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0453 P)^{2}\right. \\
& \quad+0.2606 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O}$	$1.2107(17)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.4945(19)$
$\mathrm{C} 1-\mathrm{N}$	$1.3637(18)$	$\mathrm{C} 3-\mathrm{C} 8$	$1.3966(18)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.5555(19)$	$\mathrm{C} 8-\mathrm{N}$	$1.4109(17)$
$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	$106.23(11)$	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{N}$	$110.30(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$103.98(11)$	$\mathrm{C} 1-\mathrm{N}-\mathrm{C} 8$	$111.85(11)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$107.49(11)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
Cg is the centroid of the $\mathrm{C} 10-\mathrm{C} 15$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.64	$3.325(2)$	129
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{Cg}^{\mathrm{ii}}$	0.99	2.93	$3.660(2)$	132
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.95	2.98	$3.4461(15)$	112
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cl} 1^{\mathrm{iv}}$	0.95	3.01	$3.4815(18)$	112
Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2} ;$ (ii)	$x,-y-\frac{1}{2}, z-\frac{3}{2} ;$ (iii)	$-x+1, y+\frac{1}{2}$,		
$-z+\frac{1}{2} ;$ (iv) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$.				

Table 3
Comparison of selected bond lengths and angles $\left(\AA,{ }^{\circ}\right)$ for compound (II), KUNMUB and QASXEO.

Structure/CSD refcode	$\mathrm{N}-\mathrm{C} 1$	$\mathrm{C} 8-\mathrm{N}-\mathrm{C} 1$	$\mathrm{~N}-\mathrm{C} 1-\mathrm{C} 2$
(II)	$1.364(2)$	$111.8(1)$	$106.2(1)$
KUNMUB a	$1.339(5)$	$112.8(3)$	$106.1(3)$
QASXEO b	1.37	114	105

Notes: (a) Zukerman-Schpector et al. (1993); (b) Meketa et al. (2005).

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with $\mathrm{C}-\mathrm{H}$ bond lengths of 0.95
(aromatic CH) or $0.99 \AA\left(\mathrm{CH}_{2}\right)$ and isotropic displacement parameters equal to 1.2 times $U_{\text {eq }}$ of the parent atom.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: PLATON (Spek, 2003) and SHELXTL.

This work was supported by the National Research Foundation (NRF, GUN 2053652), Pretoria, and the University of the Witwatersrand [University (Sellschop award) and Science Faculty Research Councils].

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN3029). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bouérat, L., Fensholdt, J., Liang, X., Havez, S., Nielsen, S. F., Hansen, J. R., Bolvig, S. \& Andersson, C. (2005). J. Med. Chem. 48, 5412-5414.
Bruker (1998). SMART-NT. Version 5.050 Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus, SADABS (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Fabbro, D., Ruetz, S., Buchdunger, E., Cowan-Jacob, S. W., Fendrich, G., Liebetanz, J., Mestan, J., O’Reilly, T., Traxler, P., Chaudhuri, B., Fretz, H., Zimmermann, J., Meyer, T., Caravatti, G., Furet, P. \& Manley, P. W. (2002). Pharmacol. Ther. 93, 79-98.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Geyer, J. A., Prigge, S. T. \& Waters, N. C. (2005). Biochim. Biophys. Acta, 1754, 160-170.
Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.
Koning, C. B. de, Michael, J. P., Nhlapo, J., Pathak, R. \& van Otterlo, W. A. L. (2003). Synlett, pp. 705-707.

Koning, C. B. de, Michael, J. P., Pathak, R. \& van Otterlo, W. A. L. (2004). Tetrahedron Lett. 45, 1117-1119.
Meketa, M. L., Mahajan, Y. R. \& Weinreb, S. M. (2005). Tetrahedron Lett. 46, 4749-4751.
Noble, M., Barrett, P., Endicott, J., Johnson, L., McDonnell, J., Robertson, G. \& Zawaira, A. (2005). Biochim. Biophys. Acta, 1754, 58-64.
Palazzo, G. \& Rosnati, V. (1953). Gazz. Chim. Ital. 83, 211-223.
Pathak, R., Nhlapo, J. M., Govender, S., Michael, J. P., van Otterlo, W. A. L. \& de Koning, C. B. (2006). Tetrahedron, 62, 2820-2830.
Pelly, S. C., Parkinson, C. J., van Otterlo, W. A. L. \& de Koning, C. B. (2005). J. Org. Chem. 70, 10474-10481.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zukerman-Schpector, J., Pinto, A. Da C., da Silva, J. F. M. \& Barcellos, M. T. F. C. (1993). Acta Cryst. C49, 173-175.

